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Abstract 
 
Most of the remote sensing images contain stripes even after Non-Uniformity Correction. 

Stripes may be due to response of bad/degraded detector, differential variations in detector 

sensitivity to perceived energy, temperature variations. Stripes can occur in vertical or 

horizontal direction. In this paper, we are targeting horizontal stripes as these stripes 

degrades image quality & risks image suitability for analysis of various application like SR 

(Spectral Reflectance) generation, Spectral Signature extraction, classification etc. Even 

sometimes the visual interpretation also becomes difficult, if the width of stripes is 

continuous and wider. Hence, Horizontal destripping is an essential preprocessing step to 

achieve accurate results for classification and spectral based applications. There are many 

algorithms available in spatial domain like interpolation, filtering etc. But the spatial domain 

methods can correct horizontal stripes up to limited pixel lines effectively, beyond that there 

may be visual and spectral disturbances. With spectral domain method like spectral distance 

approach, results can be noisy due to multiple pixels that may have same spectral distance. 

In this paper, we proposed a Hybrid Domain Approach which incorporate advantages of 

spatial, wavelet & frequency domains methods. In spatial domain, width of horizontal stripes 

is estimated using dark pixel information followed by slope method for removing stripes. 

However, some residual horizontal stripes still remain in the image which is to be corrected 

by taking advantage of wavelet transform and Fast Fourier Transform. Wavelet transform as 

a multi-resolution representation of the image that has the ability to separate 

directional(horizontal) wavelet components at different scale levels. Horizontal wavelet 

components related to residual horizontal stripes are filtered with an adaptive filter in 

frequency domain. An inverse Fourier transform is applied to form de-striped wavelet 

component followed by inverse wavelet transform to reconstruct final de-striped image. 

After analysis with quantitative metrics such as Signal to Noise Ratio, Peak Signal to Noise 

Ratio and Root Mean Square Error, it has been found out that hybrid domain approach gives 

better results than existing methods. The results are presented in the paper. 

 

Keywords Horizontal stripping, spatial components, frequency components, wavelet 

components 

 

Introduction 

Stripes lead to significant radiometric uncertainties in reflectance and radiance data. Hence, 

without correction, stripes are creating problems in higher-level remote sensing applications 

such as the normalized difference vegetation index, land surface temperature, classification, 

target detection etc [1, 2]. Remote sensing images contain stripes which affect the quality of 
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the image. Stripe occurs due to differential sensitivities of the detector elements to incoming 

radiation. The stripes affect the visual effect and quantitative interpretability. The stripes 

have different characteristics based on the scanning instrument. Push broom type imaging 

instruments are designed to acquire complete rows of images using a linear CCD (Charge 

Coupled Device) array placed across track [3]. Whiskbroom instrument obtain the image by 

scanning forward and backward across-track using all the detectors at a time [4]. If one 

detector of an array has a slightly modified or unbalanced responsivity form that of its 

neighbours or from its normal conditions resulting in a vertical column stripe and Horizontal 

stripe occur due to detector dynamic behaviour of CCD (Charged Coupled Device) caused by 

electronics & temperature variations. The nonlinear stripes are those whose degradation 

parameters change with the ground objects, and the irregular stripes are those in which only 

some of the pixels are contaminated. Periodic stripes are caused by poor radiometric 

calibration of the relative gain and offset of the individual detectors of the acquisition 

system. The deviation between the input/output transfer function of neighbouring elements 

of detector matrix remain constant with time. Periodic stripes originate in fine variation in 

the width of the slit. Random stripes are caused by thermal noise or random fluctuations in 

the sensor response. This type of disturbance results in bright and dark stripes with random 

length across the track. Due to stripes the result of various post processing operation will 

become vague for example if images contain stripe and classification operation is performed 

then one class related to stripe will occur. Stripe can be found out automatically by dark pixel 

(if certain threshold of dark pixel is present in column whose radiance value is less than the 

local neighbourhood pixels), by computing mean and variance of the row and by grey 

threshold method. The correction of image stripes is commonly known as image destripping.  

 In recent decades, many destripping techniques had been proposed and divided 

into digital filtering-based methods, statistics-based methods and optimization-based 

methods. Filtering based methods removes the stripes of remote sensing image by designing 

filter in transformed domain, such as Fourier Transform [5] which used to process the image 

data with a low pass filter using Discrete Fourier Transform, the advantage of this method is 

that it is useable on geo-rectified image, but it does not remove all stripes and can lead to 

significant blurring within the image. Wavelet Analysis [6] remove stripes by taking 

advantage of the scaling and directional properties to detect and eliminate striping patterns. 

Filtering based methods assume that stripping is periodic in nature and can be observed in 

power spectrum of the image. But the filter used to eliminate stripes may affect the spatial 

details with the same frequencies as stripes related to useful signal may result in blurring or 

ringing artefacts of destripped images.  

To remove the limitation of blurring or ringing artefact researchers had gradually 

turned to statistical methods which depends on the statistical characteristics of the digital 

number of each image [7]. These algorithms examine the distribution of digital numbers for 

each image and adjusts this distribution to some reference distribution. Statistical-based 

methods have certain assumptions and are limited by image size, terrain distribution, and 

other conditions. Histogram matching [8] assumes that the histogram of each column in the 

image has the same distribution. Moment matching [9] assumes that the standard deviation 

and mean value of each column in the image are the same. If the image size is too small or 

the terrain difference is too large, these statistical-based methods cannot achieve 

satisfactory results. The destripping effect of statistical-based methods depends on the 
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universality and rationality of their assumptions. Since the assumption of moment matching 

is more general, its processing effect will be better than histogram matching. 

Optimization-based destripping methods regard the stripe noise removal issue as an 

ill-posed inverse problem [10-13]. To find a better solution, prior knowledge of the ideal 

image is used to regularize the destripping problem. Introducing prior information, an 

estimation of the desired image can be computed by minimizing an energy function under a 

constrain term. In [10], Shen and Zhang proposed a maximum a posterior framework based 

on Huber-Markov regularization for both destripping and inpainting problems. Considering 

stripe noise has a clear direction signature, Bouali and Ladjal [11] developed a sophisticated 

unidirectional total variation (TV) model for stripe noise removal in MODIS (Moderate 

Resolution Imaging Spectroradiometer) data. Many researchers have proposed some 

improved unidirectional TV models by using different regularization [12-17]. Chang et al. [12] 

considered a combined unidirectional TV and frame regularization method for stripe noise 

removal as well as preserving more details. Zhang et al. [13] proposed a unidirectional TV-

Stokes model, which avoids excessive over-smoothing by distinguishing stripe regions and 

stripe-free regions. In addition, for destripping of multispectral and hyperspectral images, 

researchers had taken full advantage of the high spectral correlation between the images in 

different bands [17-19]. In [18], the authors proposed the graph-regularize Low-Rank 

Representation (LRR) for destripping of hyperspectral images. 

Although the above-mentioned methods have achieved satisfactory destripping 

results, they implement the destripping by directly estimating statistics of the desired images 

while ignoring the characteristics of stripe noise, which often causes damages to the image 

details along with the stripes. Relationship between DN (Digital Number) and Radiance 

remain linear but due to high resolution of the image relationship between DN (Digital 

Number) and Radiance become non-linear as different range of gray values can have 

different offsets and slopes as shown in Figure 1. In this paper to deal with nonlinear 

relationship and preserving the image details we have proposed hybrid domain approach to 

remove horizontal destripping from the image by combining dark pixel information from the 

sensor followed by Wavelet and Fourier transforms. Section 2 presents background related 

to Fourier and Wavelet transforms. Section 3 presents the proposed method for elimination 

of horizontal stripe. Section 4 presents the Experiment and Results. Section 5 presents the 

Conclusion.  

 
Fig. 1  Varying intensity of horizontal stripes in multispectral image. 
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Background 

One of the motivations behind this research is to develop filtering algorithms that can 

efficiently minimize stripes and noise in high-resolution multispectral images (resolution is 

less than 2 metre). This type of noise occurs in the image acquisition direction (across 

direction) and is non-periodic in nature. Wavelet transform, as a multi-resolution and scale-

space representation of the image, has the ability to separate directional stripe in certain 

directional wavelet components at different scale levels. On the other hand, Fourier 

transform can analyse image stripe in the frequency domain. As these transforms were 

incorporated in our proposed method, basic concepts of these transforms and their 

application in image filtering are reviewed in this section. 

Fourier Transform: Fourier transform decomposes the signal into an infinite set of sinusoidal 

waves of different frequencies, amplitudes and phases. It transforms the image from spatial 

domain to frequency domain entirely. The first component corresponds to the zero-

frequency value that is the mean amplitude of the signal, also known as the Direct Current 

(DC)[20]. For analyzing a discrete signal, Discrete Fourier Transform (DFT), which represents 

a finite sum of sinusoidal functions, is used. One-dimensional DFT is mathematically 

expressed in [Equation (1)] where the complex exponential term represents the sum of sine 

and cosine terms and ‘i’ is imaginary number. Fk is known as Fourier coefficient. 

 

𝐹𝑘 = ∑ 𝑥𝑛𝑒
−2𝜋𝑖

𝑁
𝑘𝑛𝑁−1

𝑛=0          𝑘 = 0,1,… , 𝑁 − 1                 Eq. 1 

Fourier transform generates real and imaginary components and can also be 

represented by amplitude and phase components. DFT is invertible and the image can be 

perfectly reconstructed using the Inverse Discrete Fourier Transform (Inverse DFT) expressed 

in equation (2): 

𝑥𝑛 = ∑ 𝐹𝑘𝑒
2𝜋𝑖

𝑁
𝑘𝑛𝑁−1

𝑛=0          𝑛 = 0,1, … ,𝑁 − 1        Eq. 2 

DFT can be easily expanded to two dimensions (2-D) or multidimensions by 

composing sequences of one-dimensional DFTs along each dimension is in any order. 2-D 

DFT is expressed in equation 3 where Fkl, known as the Fourier coefficient, is the complex 

amplitude of component kl. 

𝐹𝑘𝑙 = ∑ ∑ 𝑓𝑚𝑛𝑒
−𝑗2𝜋(

𝑚𝑘

𝑁𝑥
+
𝑛𝑙

𝑁𝑦
)𝑁𝑦−1

𝑙=0
𝑁𝑥−1
𝑛=0             Eq. 3 

Image stripes are condensed in the frequency domain to a narrow central band of 

high amplitude values in a direction orthogonal to the stripes. For instance, vertical stripes 

are presented as a horizontal central narrow band in Fourier domain. Filtering in Fourier 

transform involves examining and locating noise frequency components in the transform 

power spectrum, designing a blocking filter to remove them, applying the filter on the image 

spectrum and inverting back to image domain to obtain the de-noised image [20]. One of the 

advantages of image filtering in the frequency domain is the capability to implement the 
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filter as a simple multiplication. Different types of Fourier filters have been proposed [21] 

[22] [23] to filter out the stripe frequencies in the frequency domain. These types of Fourier 

transform filtering can be categorized into hard mask filtering, such as box or rectangular 

mask, and soft mask filtering, such as Gaussian notch filter. Most of the Fourier filtering 

methods have been successfully tested in filtering images with periodic stripes. However, 

many of these methods require some manual input in developing filter masks, and, in the 

case of non-periodic stripes, loss and distortion of image information can occur. In our 

proposed method, we applied an adaptive Fourier filtering scheme that normalizes the DC 

term of individual rows of the wavelet components of the image dominated by the stripe 

noise. 

Wavelet Transform: 

Wavelet transform represents any arbitrary function as a superposition of wavelets [23]. 

Unlike Fourier transform, wavelet transform retains both spatial and frequency information. 

Wavelet transform utilizes narrow groups of wavelets of different shapes (e.g. Debauchies, 

Morlet, Haar, Maxican Hat, etc.) that represent local and non-periodic patterns of a signal 

better than Fourier transform [24]. Unlike the continuous sinusoidal wave function that 

Fourier uses a wavelet is a brief oscillation function that is localized in space. Wavelet 

transform is used in multi-resolution analysis to obtain different approximations of a signal 

function f(x) at different levels of resolution. For continuous wavelet transform, wavelet 

coefficient is attained by: 

𝑊𝑎,𝑏 =
1

√𝑎
∫𝑓(𝑥)𝜓𝑎,𝑏(𝑥)𝑑(𝑥)         Eq. 4 

where a and b are scale and translation parameters along x-axis. And function of transform 

or admissible wavelet is obtained by scaling and translation of a mother wavelet 𝜓 (x). 

𝜓𝑎,𝑏 = 𝜓(
𝑥−𝑏

𝑎
)           Eq. 5 

In discrete signal and according to the dyadic sampling, a and b are considered 2j 

and k2j, respectively. Then the wavelet function on an orthonormal basis is defined as: 

𝜓𝑗,𝑘(𝑥) = 2
−𝑗

2 𝜓(2−𝑗𝑥 − 𝑘)          Eq. 6 

Where, j and k determine the position and width of wavelet along the x-axis. In multi-

resolution analysis, a scaling function 𝜑(𝑥) is used to create a series of approximations of the 

function; each differs by a factor of 2 in resolution. Wavelet functions 𝜓 (x) are then used to 

encode the difference in information between approximations [24]. Wavelet function can be 

expressed as a weighted sum of shifted, double-resolution scaling function: 

𝜓(𝑥) = ∑ ℎ𝜓(𝑛)√2𝜑𝑛 (2𝑥 − 𝑛)        Eq. 7 

Where, the ℎ𝜓(𝑛) are called the wavelet function coefficients. The scaling function 

coefficient ℎ𝜓(𝑛)  can be related ℎ𝜑 to by the equation ℎ𝜓(𝑛) = (−1)𝑛 ℎ𝜑(1 − 𝑛). Fast 

Wavelet Transform (FWT) [25] algorithm for fast and efficient implementation of Discrete 

Wavelet Transform (DWT) is based on the relationship between the coefficients of the 



Proceedings of the 43rd INCA International Conference, Jodhpur, 06–08 November 2023.  356 

DWT at adjacent scales. Detail coefficient (𝑊𝜓) and approximation coefficient (𝑊𝜑)  at 

scale j + 1 can be derived as: 

𝑊𝜓(𝑗, 𝑘) = ∑ ℎ𝜓(𝑚 − 2𝑘)𝑊𝜑(𝑗 + 1,𝑚)𝑚       Eq. 8 

𝑊𝜑(𝑗, 𝑘) = ∑ ℎ𝜑(𝑚 − 2𝑘)𝑊𝜑(𝑗 + 1,𝑚)𝑚        Eq. 9 

These equations show that both the approximation and detail coefficients at scale 

j can be obtained by convolving 𝑊𝜑(j + 1, k), approximation coefficient at the scale j + 1, 

with the reversed scaling and wavelet vectors, ℎ𝜑(-n) and h𝜓(n) followed by the 

subsequent subsampling. In one-dimensional (1-D) multi-resolution analysis, signal f(x) is 

decomposed into an approximation (low pass) and a detail (high pass) component in one 

scale level. After decomposition, the size of these components is halved by down-

sampling. The approximation component can undergo iterative decomposition in the next 

scale level. The theory of multi-resolution analysis and wavelength can be extended to 2-D 

or higher dimensions. Two-dimensional wavelet transform is a multi-resolution, scale-

space representation of 2-D data, such as digital images. It is represented by one scaling 

function and three directionally sensitive wavelet functions at each scale level. 

𝜑(𝑥, 𝑦) = 𝜑(𝑥)𝜑(𝑦)                             𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛     Eq. 10 

𝜓𝐻(𝑥, 𝑦) = 𝜓(𝑥)𝜑(𝑦)                        𝑊𝑎𝑣𝑒𝑙𝑒𝑡 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛   Eq. 11 

𝜓𝑉(𝑥, 𝑦) = 𝜑(𝑥)𝜓(𝑦)                         𝑊𝑎𝑣𝑒𝑙𝑒𝑡 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛   Eq. 12 

𝜓𝐷(𝑥, 𝑦) = 𝜓(𝑥)𝜓(𝑦)                        𝑊𝑎𝑣𝑒𝑙𝑒𝑡 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛   Eq, 13 

Where, 𝜑(x, y) represents the scaling function and 𝜓H(x, y), 𝜓V(x, y), and 𝜓D(x, y) 

represents directional wavelet functions in horizontal, vertical and diagonal directions, 

respectively. 

Two-dimensional wavelet transform (decomposition) can be obtained by taking 

the 1-D DWT of the rows of the signal data f(x, y) and the subsequent 1-D DWT of the 

resulting columns. In a signal scale process, four quarter-size sub-images, one 

approximation coefficient (W𝜑) and three sets of detail coefficients (W𝜓𝐻, W𝜓𝑉  and 

W𝜓𝐷) are produced. The approximation coefficient, W𝜑, is further decomposed at the 

next scale level. In multi-resolution scale levels, the signal is decomposed into one 

approximation coefficient at the lowest frequency level and three detail coefficients at 

each of the scale levels. In each scale level, these three detail coefficients W𝜓𝐻, W𝜓𝑉  and 

W𝜓𝐷  captures the horizontal variations (horizontal stripes, edges), vertical variations 

(vertical stripes, edges) and the variations along the diagonal directions, respectively. 

Wavelet capability of decomposing an image into directional detail components in 

multiple scale levels is advantageous in detecting and eliminating stripes. Sdelstripes 

separate out in detail coefficients of corresponding direction. Non-periodic directional 

stripes have different frequencies and appear at many scale levels. Filtering out stripes from 

these directional wavelet components is more effective than filtering out stripes directly 

from original image. Generally, wavelet-based image filtering is performed in three main 

steps: (i) decomposition of image into wavelet components in specified scale levels; (ii) 
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treatment of the striped directional components; and (iii) image reconstruction from filtered 

components. 

Despite efficiency in stripe detection, wavelet-based filtering is still complicated by 

the fact that directional components also capture non-stripe signals, including contrasting 

feature edges in addition to the stripes. Non-stripe signals become more significant at higher 

scale (lower frequency) levels and blend with stripe information complicating the filtering 

algorithm, which limits the efficiency of wavelet-based filtering in reducing non-periodic 

stripes. 

 

Proposed Method: 

 Our de-striping method is based on a combination of dark pixel slope estimation, wavelet 

decomposition and frequency domain adaptive filtering. In spatial domain, width of 

horizontal stripes is estimated using dark pixel information followed by slope method for 

removing horizontal stripes. However, some residual horizontal stripes still remain in the 

image which is to be corrected by taking advantage of wavelet transform and FFTs.  Slope 

corrected image is decomposed into wavelet components in a given number of scale 

levels. The wavelet directional components related to residual horizontal stripes are 

filtered with an adaptive filter in the frequency domain. Discrete Fourier transform (DFT) is 

applied on individual rows (along stripe direction) of the stripe-rich wavelet components. 

An adaptive filter is applied by detecting and excluding potential non-stripe extreme pixels 

and normalizing the DC values adaptively in order to suppress the stripe effect only. An 

inverse Fourier transform is then applied to form the de-striped wavelet component at 

each level, followed by inverse wavelet transform to reconstruct the final de-striped 

image. We are discussing each individual step in further details in subsections. 

Dark Pixel Slope Estimation: 

Multispectral imaging consists of certain number of devices. Each device consists of definite 

number of ports. Each port contains image data as well as dark pixel (which has correlation 

information with respect to width of horizontal stripes). The main reason for using dark pixel 

is that the width size of horizontal stripe in high resolution multispectral image is dynamic. 

Multispectral sensor contains dark pixel which is very useful for the calculation of the 

window size for applying first order statistics to remove horizontal stripe in the images. We 

have applied dark pixel slope on multispectral images port wise. Multispectral image 

contains one dark pixel for each port. There are two methods for calculation of the window 

size, by calculating the difference between the adjacent trough (or crest) of the dark pixel vs 

pixel number curve as shown in Figure 2. In this method the window size is dynamic and it 

changes for every row. For every row there is a different reference statistics estimation and 

local first order statistics for removing stripe. Slope for each row is calculated by dividing the 

reference mean by local mean for that row. Slope is applied on each row to get slope 

corrected image after which Wavelet and Fourier transforms are applied to remove 

horizontal residual stripes.  The whole procedure is explained in the flow chart {1}.  
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Wavelet and Fourier Transforms: 

The slope corrected image is subjected to Discrete Wavelet Transform (DWT) and 

decomposed into a number of frequency scale levels. At each level, three directional 

components (horizontal, vertical and diagonal) are formed in addition to the image 

approximation component. This process separates the stripes (in addition to other image 

contents) in the detail wavelet components in the stripe direction (e.g. horizontal stripes in 

the horizontal detail components). Non-periodic stripes, as in multispectral imagery 

captured by push broom sensors, appear in a number of scale levels. For most wavelet 

implementation, determining the wavelet type [wavelet type=Daubechies(db4)] and number 

of scale levels (level used for this experiment is 3) is an experimental step that varies 

according to the residual stripe and image characteristics. Horizontal wavelet components 

are transformed to the frequency domain using 1-D Fourier transform.  

 

Fig. 2 Plot of dark pixel and row number to find out different crest/trough location. 

The components are transformed as individual vectors, where each vector contains 

the digital numbers of a single row. We are filtering individual rows in the horizontal 

component of the image wavelet transform. This process emphasizes the stripes in the 

frequency domain as variations in the DC (Direct Current or, amplitude value of the zero-

frequency) values of the Fourier transform of individual row. Generalized frequency filtering 

can be used at this point to de-stripe the residual striped horizontal wavelet components by 

 
Row number 
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equalizing the DC value of each row Fourier transform. One of the approaches that can be 

used to perform such normalization is to set the DC values to zero (or any constant value). 

The DC value represents the mean amplitude of the signal row and is proportional to the row 

mean in the spatial domain. Equalizing the DC values in this sense can introduce artifacts, 

especially for small images and for images with highly contrasting features. Edges of such 

features (non-stripe features) appear in the horizontal wavelet components can influence 

the algorithm. Results may have less striping, however, smearing artifacts will be introduced 

due to the effect of the DC equalization process that will change values in the original image 

so that the average of each row’s values will be the same. To overcome this problem, we 

introduced an adaptive filter that detects and accounts for influential non-stripe signals in 

the horizontal wavelet component when normalizing the DC values in the frequency domain. 

Influential pixel values (e.g. high-contrast feature edges) in the horizontal wavelet 

components are detected in each row along the striping direction as those beyond a specific 

statistical threshold from the row neighbourhood mean. A new vector Xj   as shown in 

equation (14) free from these pixels is created by excluding influential values from the 

original wavelet vector so that 

𝑥𝑖
𝑗
 𝜖 𝑦𝑗 𝑖𝑓 (𝑥𝑖

𝑗
− 𝑋𝑗) < 𝑘 ∗ 𝜎         Eq.14 

Where, 𝑥𝑖
𝑗

 is the value for pixel i in row j, Xj is the statistical mean of the digital numbers of 

row j (or few rows adjacent to row j), 𝜎 is the standard deviation of the wavelet component, 

k is a coefficient threshold used to set the filtering value as a multiplier of the standard 

deviation 𝜎. In our method, three parameters (wavelet type, number of scale levels “L”, and 

threshold value “k”) need to be determined based on the image content and stripe 

characteristics. The final normalized DC value for each row as shown in equation (15) can be 

computed as proportional to the difference of the mean before and after excluding 

influential signal values and is computed as follows: 

𝐹𝑛𝑜𝑟𝑚
𝑗

= 𝐹𝑜𝑟𝑖𝑔
𝑗

∗
𝑋𝑗−𝑌𝑗

𝑋𝑗
          Eq.15 

Where, Forig and Fnorm are the DC values of the Fourier Transform of the original and 

normalized column, respectively, and Yj is the mean of the column after excluding influential 

signal. Note that if there are no values related to high-contrast features in the wavelet 

directional component columns, the final DC value Fnorm is zero; otherwise, the final 

normalized DC value will be raised or lowered accordingly. Wavelet details component is 

subject to a soft thresholding process, where the detail value is set to zero if it is less than a 

certain threshold determined from image noise level. 

Detailed steps of proposed Method: 

Step 1: Compute local statistic(mean) of each row in input image as shown in equation (16) 

where N is the total number of columns. 

𝑅𝑖 =
∑ 𝐼(𝑖,𝑗)𝑁
𝑗=0

𝑁
                Eq. 16 
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Step 2: Estimate dynamic window size for each row by calculating forward trough location 

(ftl) & backward trough location(btl) based on dark pixel estimation as shown in equation 

(17) 

 𝑑𝑤𝑠𝑖 = (𝑓𝑡𝑙 − 𝑏𝑡𝑙) ∗ 𝑁𝐹          Eq. 17 

where, NF is normalization factor. For example, we have to estimate window size for scan 

line 4, we have to locate forward trough (i.e. 2 in figure 2) and backward trough (i.e. 1 in 

figure 2), the difference between forward tough location and backward trough location is (5-

3) =2 which is multiplied by default normalization factor=4 resulting in window size of 8 for 

scan line 4. The normalization factor can vary from 2 to 6. 

Step 3: Compute global statistic(gs) for each row of input image as shown in equation (18) 

where N is the total number of columns, dws represent dynamic window size. 

𝑔𝑠𝑖 =
∑ ∑ 𝐼(𝑘,𝑗)𝑁

𝑗=0
𝑘=𝑖+𝑑𝑤𝑠𝑖
𝑘=𝑖−𝑑𝑤𝑠𝑖

𝑁∗𝑑𝑤𝑠
          Eq. 18 

Step 4: Estimation of slope(sl) for each row of input image as shown in equation (19) 

𝑠𝑙𝑖 =
𝑔𝑠𝑖

𝑅𝑖
            Eq. 19 

Step 5: Apply slope on each row of input image to obtain Slope Corrected Image (SCI) as 

shown in equation (20) to remove horizontal stripe. But some residual stripe still remains in 

the image which is removed using wavelet and Fourier transform. 

𝑆𝐶𝐼 = 𝐼(𝑖, 𝑗) ∗ 𝑠𝑙𝑖         Eq. 20 

Step 6: Estimate different directional component of image using Debauchies wavelet 

transform as shown in equation (21) & in figure 3 where AC denote Approximation 

Coefficients, HD denote horizontal details, VD denote vertical details and DD denote 

diagonal detail of the image.  

𝐴𝐶,𝐻𝐷, 𝑉𝐷,𝐷𝐷 = 𝐷𝑊𝑇(𝑆𝐶𝐼)        Eq. 21 

Step 7: Estimating influential pixel vector(ipv) (e.g. high-contrast feature edges) as shown in 

equation (14)   in the horizontal wavelet components in each row along the striping direction 

as those beyond a specific statistical threshold from the row neighborhood mean. 

Step 8: Estimating Fourier Transform of row vector of horizontal wavelet component as 

shown in equation (22) & in figure 4 after excluding influential pixel vector. 

𝑅𝑜𝑤𝑖 = 𝐹𝑇(𝑟𝑜𝑤𝑖 − 𝑖𝑝𝑣𝑖)        Eq. 22 

Step 9: Normalizing DC component of Row vector by difference of mean before and mean 

after excluding influential pixel vector as shown in equation (15).  

Step 10: calculate Inverse Fourier transform to obtain residual horizontal stripe free wavelet 

component as shown in equation (23). 
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𝑟𝑜𝑤𝑖 = 𝐼𝐹𝑇(𝑅𝑂𝑊𝑖)                      Eq. 23 

Step 11: Replace modified horizontal wavelet component in wavelet coefficients with 

universal soft thresholding and apply inverse wavelet transform to obtain residual horizontal 

stripe free image.  

 

Fig. 3 Input image, slope corrected image & wavelet component of slope corrected image as 
approximation coefficients, horizontal, vertical & diagonal details. 

 
Fig. 4 showing result of Fourier transform on horizontal wavelet details and result of adaptive filter on 

Fourier coefficients to obtain modified horizontal wavelet details. 
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Experiment and Results 

We have tested the proposed method using various sets of high-resolution multispectral 

image (resolution is less than 2 meter) which include variety like water, cloud, vegetation 

etc. Before applying the proposed method, different methods to remove noise were applied 

like ghost noise removal & adaptive noise removal. We have made out a comparison 

between the result of Mean offset, Mean slope, Fourier Transform, Wavelet Transform and 

hybrid domain method. Figures 5, 6 & 7 represent comparison output of different methods.  

Visual Inspection: Visual assessment constitutes a primary step in assessing the quality of 

multispectral images and selecting the bands suitable for analysis. Extending visual 

assessment to evaluate the quality of image de-striping and to help determine de-striping 

parameters is not new to the multispectral image processing community. In this research, 

the de-striped images resulting from applying different methods were visually assessed and 

compared. Mean offset method depend on the calculation of the reference mean and row 

mean in image across the track. The main parameter is reference mean. Reference mean can 

be global mean (mean of the whole image), window mean (mean of local area, window of 

100 or any other size), device mean (mean of the pixels of the device of the image; number 

of pixels in the device may vary on the sensor characteristics). In Mean slope method, slope 

for each row is calculated by dividing the reference mean by the row mean. The reference 

mean can be global mean or local mean. Then each pixel is updated by multiplying the pixel 

with its respective row slope. Slope method gives good results than offset method. In Fourier 

Transform image is transformed to Fourier domain where DC component of each row is 

replaced with mean of row excluding DC component followed by inverse Fourier Transform 

to obtain destriped Image. In Wavelet Transform Image is transformed to different wavelet 

component in which Horizontal component is modified by using slope method followed by 

Inverse Wavelet Transform to obtained destriped Image. Figure 5 shows the result of 

different methods when applied on image which contain vegetation. In case of vegetation, 

Mean Offset, Mean Slope, Fourier Transform (modified spectral property of image as color 

change of features is observed) & Wavelet Transform (introduce dotted artifact in image) 

methods were not able to remove stripes as hybrid domain method perfectly removed 

horizontal stripes. Figure 6 shows result on homogenous image, mean offset method 

introduce artifacts in darker region due to overall statistics of the image, while mean slope 

method also failed to remove stripes, Fourier Transform (modified spectral property of 

image as color change of features is observed), Wavelet Transform (introduce dotted artifact 

in image) while hybrid domain method removed horizontal stripes in homogenous image. 

Figure 7 shows the result on heterogeneous image which contain vegetative and water, 

mean offset and slope methods tried to introduce artifacts in vegetation areas due to 

statistics of water region, Fourier & Wavelet Transform change the spectral property of 

features in image but hybrid domain method removed horizontal stripes without introducing 

any artifact in heterogeneous image while preserving spectral property of feature in image. 

For all tested images, differences in filtering quality resulting from the implementation of 

different filtering methods were clear and could be compared visually. 
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Quantitative assessments 

Multispectral high-resolution Images are used for Quantitative assessment with parameters 

like Signal to Noise Ratio (SNR), Peak Signal to Noise Ratio (PSNR) & Root Mean Square Error 

(RMSE) which quantify image filtering quality [26] [27]. SNR, which is commonly used as a 

measure of signal (or image) quality, is computed as the ratio of mean value of a signal to the 

standard deviation of a signal as expressed in the equation (24) below: 

𝑆𝑁𝑅 = (
𝑀𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
)         Eq. 24 

Table 1 compare the SNR of Mean offset, Mean slope, Fourier Transform, Wavelet Transform 

method & Hybrid Domain Approach and it has been found out that SNR value is high after 

processing image with hybrid domain approach. 

 

Fig. 7 Comparisons of differ outputs. 
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Table 1 SNR values of different methods. 

Image 
\SNR 

Input 
Image 

Mean  
offset 

Mean  
slope 

Fourier 
Transform 

Wavelet 
Transform 

Hybrid 
 Domain 

Image1 3.06 3.12 3.1 1.56 2.94 3.15 

Image 2 2.009 2.006 2.02 1.08 2.66 2.2 

Image 3 5.65 10.52 6.33 1.62 1.39 6.6 

 

RMSE is used as an image noise measure and can be conveniently computed as in equation 

(25): 

𝑅𝑀𝑆𝐸 = √
1

𝑀∗𝑁
∑∑[(𝑝(𝑖, 𝑗) − 𝑞(𝑖, 𝑗)]2         Eq. 25 

Where, M and N refer to the image number of rows and columns, respectively; p(i, j) and 

q(i, j) are the pixel value at row i and column j for the clean and processed image 

respectively.  

Table 2 RMSE value of different methods. 

Image\ 
RMSE 

Mean 
offset 

Mean 
 slope 

Fourier 
Transform 

Wavelet 
Transform 

Hybrid  
Domain 

Image1 8.01 9.37 10.49 10.39 5.3 

Image 2 7.07 6.74 10.71 6.06 5.24 

Image 3 9.15 5.79 10.65 5.27 4.8 

 

Table 2 represent RMSE value comparisons and it has been found out that RMSE 

value for hybrid domain method is lower than Mean offset, Mean slope, Fourier Transform 

& Wavelet Transform method. PSNR (Peak Signal to Noise Ratio) is used as a measure of 

image quality, is computed as the ratio of maximum possible power of a signal to the 

power of corrupting noise and expressed in logarithmic decibel scale as expressed in 

equation (26):  

𝑃𝑆𝑁𝑅 = 10. log10(𝑀𝐴𝑋
2 𝑀𝑆𝐸⁄ )        Eq. 26 

Where, MAX is the maximum possible value (e.g. 255 for 8-bit image) and MSE is the Mean 

Squared Error. Table 3 represent PSNR value computed from various methods. PSNR value 

of Hybrid Domain method is higher than Mean offset, Mean slope, Fourier Transform & 

Wavelet Transform method. 

Table 3 PSNR of different methods. 

Image\PSNR Mean 
offset 

Mean 
 slope 

Fourier 
Transform 

Wavelet 
Transform 

Hybrid  
Domain 

Image1 28.65 29.65 27.75 27.74 31.19 
Image2 28.64 29.45 27.78 30.84 29.56 
Image3 28.94 30.47 27.88 30.84 32.4 
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Conclusion 

In this study, we introduced the Hybrid Domain Approach based on dark pixel slope 

estimation, wavelet multi-resolution image analysis and adaptive Fourier transform 

filtering. The method separates residual image stripes using wavelet decomposition and 

adaptively normalizes the zero-frequency components of individual vectors (rows) in the 

direction of the stripes. The adaptive nature of the hybrid domain method removes the 

artifacts that could occur in small-sized images or in the case of the existence of 

contrasting features. We also tested Mean offset, Mean slope, Fourier Transform & 

Wavelet Transform method. We applied the quantitative assessment using RMSE, SNR & 

PSNR on the input images and on processed images. Our comparison showed that the 

proposed Hybrid Domain Approach de-striping algorithm performed excellently when 

applied to all images, which was shown visually and evidenced by the quantitative 

assessment results. 

Future work: In this study we have focused on horizontal stripe present in an image but 

there is other oblique stripe as well as noise present in the image. In future study we will 

try to remove different directional stripe as well as noise using Hybrid Domain Approach 

based on different mother Wavelet testing and different type of adaptive filters to be 

incorporated in Fourier domain.  
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